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Abstract 

 

This paper aims at assessing the extent of connectedness (integration) across the four 

shipping markets (freight, secondhand vessels, newbuilding, and scrap) for three 

different segments of the industry (bulkers, oil tankers, and LNG vessels). We use 

monthly data for the period 1990 to 2023. The innovation of our study is that we 

examine the asymmetric connectedness of the four shipping markets following 

Stopford’s (2009) shipping market integration theory. We find strong patterns of 

asymmetric integration across the four markets, with the spillover effects being 

higher at the tails of the conditional distribution. We corroborate prior literature, 

finding that the freight market is overall the strongest net spills provider and 

consequently the dominant market among the four shipping markets. The only 

exception is the freight market for LNG vessels, where the secondhand market 

becomes partially dominant. Moreover, the secondhand and newbuilding markets 

appear to be interconnected, with the former acting as a net transmitter to the latter. 

Finally, our dynamic analysis provides evidence that the shipping market integration 

is affected by spillover effects from exogenous shocks arising from the pandemic, 

the war in Ukraine and the related government interventions to counterbalance the 

adverse implications for economies globally. Our findings contribute to the 

decision-making process in both ship and asset management. 
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1. Introduction 

Martin Stopford’s market integration theory constitutes a starting point for the analysis of 

connectedness among the four basic shipping markets: the freight market, the secondhand vessels 

market, the newbuilding market, and the scrap market (Stopford, 2009). Shipowners’ activity in 

different markets is characterized by a high degree of interdependence because during the shipping 

cycle the same shipowners could be trading in all four markets. An important element of the 

shipping integration theory is that the freight market, namely trading in sea transport, is the only 

real source of wealth and the main cash inflow for the shipping companies. The scrap market is 

the next source of cash inflow, especially during the negative phase of the shipping cycle or after 

new vessels have been delivered, while the oldest, least efficient vessels are demolished. The 

secondhand market usually involves a transaction between two shipowners and, therefore, 

represents a zero-sum wealth and cash game for each shipping segment. Combined, the sale and 

purchase and the scrap market filter our the least successful shipowners, as during a downward 

phase of the shipping cycles weaker shipowners either sell or scrap their vessels. Finally, the 

newbuilding market implies a cash outflow and a corresponding vessel inflow. It should be noted 

that the scrap and newbuilding markets lead the fleet replacement process by sucking in new 

vessels and driving out old ones.  

The integration process in the four shipping markets takes place as follows. At the 

beginning of the shipping cycle, an increase in freight rates constitutes an incentive for shipowners 

to find a vessel without delay to take advantage of the higher rates, thereby increasing demand for 

secondhand vessels. Increased demand for secondhand vessels leads to higher secondhand vessel 

prices. As a result, shipowners start ordering new vessels. With the eventual delivery of new 

vessels, the supply of ships increases, and the freight rates start to fall. This leads the weaker 

shipowners to lay up vessels, sell vessels, or even scrap their least efficient vessels. The latter 

results in fleet replacement on the one hand, but on the other hand it affects the freight market 

causing higher freight rates as the supply is reduced and effectively starting a new shipping cycle. 

It becomes clear that Stopford’s integration theory implies that freight rates are the main driving 

force of the shipping industry. Therefore, we expect that the freight market will be leading, acting 

as the dominant net spillover provider to the other three markets in each shipping segment network. 

Equally important is the fact that shipowners, contrary to the trend of other industries, are attracted 
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to the Risky Asset Pricing model (RAP), which offers high-risk, low-return opportunities through 

asset management and capital gains, that is by buying and selling ships. The integration process 

could be affected by unanticipated exogenous events, such as wars, oil shocks etc. Even the risky 

asset pricing behavior of investors could constitute a factor leading to unexpected changes in the 

integration process. Thus, we are strongly motivated to empirically examine Stopford’s integration 

theory, as well as possible deviations from it. We contribute to the extant literature by examining 

the asymmetric connectedness of the four shipping markets of three segments (Bulkers, Oil 

Tankers, LNG vessels). To the best of our knowledge, an asymmetric spillover approach to 

measure the interdependence across shipping markets, in the framework of Stopford’s shipping 

market integration theory, is missing from the literature.  

In the first place, our empirical investigation confirms the integration of the four shipping 

markets by documenting significant shock transmission mechanisms (connectedness) across these 

markets. Second, we find that the integration of the four markets exhibits strong asymmetries, as 

the spillover effects after a shock are found to be higher at the tails of the conditional distribution. 

Third, our findings confirm that the freight market is the strongest net spills provider. The only 

exception is the middle- and right-tail dependence of the freight market in the case of LNG vessels, 

where the secondhand market appears to be the dominant market that leads the other markets 

examined. The relatively younger age of the LNG fleet compared to bulk carriers and tankers over 

the period examined may explain this finding. Fourth, the time–varying analysis conducted reveals 

that the freight market, both in the bulkers and in the tankers segments are the dominant leading 

market, both during normal periods and following shocks, in line with Stopford’s theory. Fifth, the 

time–varying analysis revealed that the secondhand and newbuilding markets appear to be 

interrelated, with the former acting as a net transmitter to the latter when the prices of the 

secondhand vessels are on the up. Finally, our dynamic analysis provides evidence consistent with 

strong spillover effects from exogenous shocks arising from the pandemic, the war in Ukraine, and 

pertinent government interventions to counterbalance the adverse implications of these shocks for 

economies globally. Our findings are important for both the asset management and the ship 

management dimensions of maritime risk management.  

The remainder of the paper is structured as follows. In section 2, we present a brief review 

of recent literature. Section 3 discusses the data and the econometric methodology deployed for 
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the purposes of our analysis. We present and discuss our results in section 4. Section 5 summarizes 

our findings and presents concluding remarks. 

 

2. Review of recent literature 

Recent search interest on measuring spillover effects among different shipping markets in 

the various segments of the shipping industry stems primarily from the need to depict relationships 

that can be used as effective risk management during the shipping cycle, providing effective 

warnings before an upturn or a downturn. One strand of the literature focuses on the impact of 

external shocks, recognizing the non-linearity of the interrelationships and consequently deploying 

appropriate methodologies in their analysis. For example, Zhang et al. (2014) measure the 

interrelationship between the freight market, the newbuilding market, and the secondhand ship 

market in the case of the containers, the dry bulk, and the oil tanker segments of the shipping 

industry, before, during and after the 2008-10 financial crisis. Deploying Granger causality testing, 

along with Brownian distance correlation to deal with the non-linearity of the causality 

relationships explored, they find that there are clear boundaries separating the different markets in 

each of the shipping industry segments they examined, detecting that the newbuilding market is 

relatively distant from the secondhand market and the freight market, both before and after the 

financial crisis in all three segments of the shipping industry they examined. However, during the 

crisis, the authors find boundaries separating the three major markets to fade, with the three 

markets becoming more closely interlinked with each other, as both Granger-causality 

connectivity and Brownian distance correlation show that the impact of all three shipping markets 

became much more profound.  

The study of Tsouknidis (2016), which aims to identify dynamic volatility spillovers within 

and between the dry-bulk and the tanker freight rate markets via a multivariate DCC-GARCH 

model and the Diebold-Yilmaz volatility spillover index, depicts large time-varying volatility 

spillovers across shipping freight rate markets, with volatility spillovers being more pronounced 

during, as well as after the global financial crisis of 2008-10. Along the same lines, Wu et al. 

(2018) study the causality relationship between the freight rate market the newbuilding market and 

the secondhand market in the case of the dry bulk segment of the industry. Applying Granger 

causality test at each stage of the shipping cycle, the authors find a causality relationship can be 
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identified only during the trough and peak periods. When comparing the results for the trough 

period before and after the financial crisis, they identify strong similarities, highlighting that 

shipping cycle rules are upheld. Moreover, Li et al. (2018) deploy general autoregressive 

conditional heteroscedasticity-copula models to capture the dynamics and interdependencies in the 

freight rate market for dry bulk carriers, containers, and oil tankers. Their Granger causality tests 

detect the presence of one-way causality running from the dry bulk and the clean tanker freight 

rate returns to the container and the dirty tanker freight rate returns, respectively. The authors 

confirm nonlinear dynamic interdependencies among freight rate returns in the three shipping 

industry segments examined, indicating freight rate volatility persistence in individual shipping 

segments, except in the clean tanker freight market, where volatility was found to be less stubborn. 

GARCH methodology is also applied by Dai et al. (2015) to study the volatility spillover effects 

across the newbuilding, the secondhand, and the freight markets in the dry bulk segment of the 

shipping industry. The authors’ results reveal significant volatility transmission effects in each 

sub-sector of the dry bulk segment they examined (i.e. capesize, panamax, handymax, and 

handysize), with the market volatility transmission mechanism varying for different vessel types.  

Another strand of recent research concentrates on the transmission mechanism amongst the 

four shipping markets, focusing on derivatives. The pioneering work of Kavoussanos and Visvikis 

(2004) links spot and forward freight agreement (FFA) prices, showing that the bi-directional lead-

lag relationship, which characterizes most futures markets, applies in shipping markets too, both 

for prices and for volatility of prices. More recently, Alexandridis et al. (2017) study the economic 

spillovers between time-charter rates, freight futures and freight options prices in the dry-bulk 

segment. Their findings detect significant information transmission in both returns and volatilities 

between the three shipping markets examined, attributable to trading activity and market liquidity. 

The authors also underline that freight futures lead sport freight rates, but freight options lag both 

futures and spot freight rates. In the same direction, Sun et al. (2019) make use of the Diebold-

Yilmaz volatility spillover methodology to explore the interrelation of returns and volatility 

spillovers among derivative markets in the case of oil tankers. The authors demonstrate how 

volatility spillovers transmit from oil cargo to bunker markets, and then to tanker FFAs, illustrating 

that market integration has a substantial impact on aggregate risk exposures in the case of the oil 

tanker segment of the shipping industry.  
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In general, there seems to be a gap in the literature in the area of integration between all 

four shipping markets. A study by Anyanwu (2013) documents the transmission process as starting 

with freight rate increases, subsequently leading shipowners to place more orders to build new 

ships, which, in turn, drives newbuilding prices higher; simultaneously, the price of second-hand 

ships goes up, as second-hand ships are substitutes for newbuilding and can be deployed in the 

market in a relatively short period of time. However, in that study the focus is on the correlation 

between freight rates and fleet size alone. To the best of our knowledge, an asymmetric spillover 

approach to measure the interdependence across the four shipping markets is missing from the 

literature. In the analysis that follows, we examine the asymmetric connectedness of the four 

shipping markets for three segments of the shipping industry, namely bulkers, oil tankers, and 

LNG vessels.  

 

 

3. Data statistical properties and econometric methodology 

 

3.1. Data sources and statistical properties of variables 

          In our empirical investigation we use monthly time series data over the period 1990 M3 – 

2023M6 for the bulker vessels market, 1990 M1 – 2023 M6 for the oil tankers market and 2014 

M9 – 2022 M12 for the LNG vessels market (Table 1). Availability of data for LNG vessels 

determines the selected time period, as well as the fact that we are able to examine only three of 

the four markets in this segment of the industry. 

Table 2 presents the summary statistics for the variables. Skewness is a measure of 

symmetry of the probability distribution of a variable about its mean, while kurtosis is a measure 

of tail heaviness of the distribution, measuring the weight of the tails relative to the rest of the 

distribution. Our data reveals that, overall, our variables are highly, positively or negatively, 

skewed with platykurtic or leptokutric distribution. The above results combined suggest that there 

are descriptive signs of non-normal distribution of the series and, consequently, indicate the need 

for econometric testing of their normality properties. For that reason, we apply the quantile-mean 

covariance (QC) normality test (Bera et al., 2016), which examines the presence of asymmetric 

distribution in the sampling performance. The results, reported in Table 3, strongly reject the null 

hypothesis of normal distribution, thus confirming the asymmetric behavior of all series. 
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Therefore, given the above indicated nonlinearities, to avoid spurious regression results, we need 

to apply econometric techniques that depart from the standard Gaussian assumptions. 

 

Table 1: Variables and Sources 

Variable 

notation 

Variable explanation Source 

𝑓𝑟𝑏𝑢𝑙𝑘𝑒𝑟 Clarksons average bulker earnings ($/day) Clarksons Research (code 97730) 

𝑛𝑏𝑏𝑢𝑙𝑘𝑒𝑟  Bulkcarrier newbuilding price index Clarksons Research (code 20651) 

𝑠ℎ𝑏𝑢𝑙𝑘𝑒𝑟 Bulker secondhand price index Clarksons Research (code 40285) 

𝑠𝑝𝑏𝑢𝑙𝑘𝑒𝑟  Panamax bulker scrap value ($m) Clarksons Research (code 50974) 

𝑓𝑟𝑡𝑎𝑛𝑘𝑒𝑟  Clarksons average tanker earnings ($/day) Clarksons Research (code 97726) 

𝑛𝑏𝑡𝑎𝑛𝑘𝑒𝑟 Oil tanker newbuilding price index Clarksons Research (code 29454) 

𝑠ℎ𝑡𝑎𝑛𝑘𝑒𝑟  Tanker secondhand price index Clarksons Research (code 12508) 

𝑠𝑝𝑡𝑎𝑛𝑘𝑒𝑟 VLCC scrap value Clarksons Research (code 65398) 

𝑓𝑟𝑙𝑛𝑔  LNG 160K CBM 1-year timecharter rate ($/day) Clarksons Research (code 60378) 

𝑛𝑏𝑙𝑛𝑔 LNG carrier newbuilding price index Clarksons Research (code 98646) 

𝑠ℎ𝑙𝑛𝑔 LNG 160K CBM 5-year-old secondhand prices ($m) Clarksons Research (code 542204) 

 

Table 2: Summary statistics 

Variable No. of 

obs. 

Mean Median Min Max Skewness Kurtosis 

𝑓𝑟𝑏𝑢𝑙𝑘𝑒𝑟 400 13891 9695 3636 65173 2.487 10.106 

𝑛𝑏𝑏𝑢𝑙𝑘𝑒𝑟  400 135.34 130.50 88.63 239.62 1.250 5.410 

𝑠ℎ𝑏𝑢𝑙𝑘𝑒𝑟  400 222.9 193.00 123.7 599.6 2.208 8.385 

𝑠𝑝𝑏𝑢𝑙𝑘𝑒𝑟  400 3.946 3.914 1.342 8.500 0.337 2.050 

𝑓𝑟𝑡𝑎𝑛𝑘𝑒𝑟  402 21358 16240 3650 79653 1.427 4.778 

𝑛𝑏𝑡𝑎𝑛𝑘𝑒𝑟  402 160.8 155.0 112.4 255.4 1.093 4.295 

𝑠ℎ𝑡𝑎𝑛𝑘𝑒𝑟  402 128.42 118.72 79.89 250.16 1.504 4.574 

𝑠𝑝𝑡𝑎𝑛𝑘𝑒𝑟  402 12.751 13.083 3.825 28.878 0.330 1.980 

𝑓𝑟𝑙𝑛𝑔 100 67598 59300 28750 210000 1.523 6.086 

𝑛𝑏𝑙𝑛𝑔 100 145.1 139.2 133.9 175.1 1.288 3.806 

𝑠ℎ𝑙𝑛𝑔 100 160.6 158.0 145.0 200.0 8.039 4.267 

 

Table 3. Quantile-mean covariance (QC) normality test 

  ε=0.001 ε=0.01 ε=0.05 ε=0.10 ε=0.15 ε=0.20 

 

𝑓𝑟𝑏𝑢𝑙𝑘𝑒𝑟  
𝛵1𝑛 5.4722*** 5.4722*** 5.4722*** 5.4722*** 5.4722*** 5.4722*** 

𝛵2𝑛 29.944*9** 29.9449*** 29.9449*** 29.9449*** 29.9449*** 29.9449*** 

𝛵3𝑛 5.5061*** 5.4554*** 5.2090*** 4.6849*** 3.7664*** 2.4628*** 

 

𝑛𝑏𝑏𝑢𝑙𝑘𝑒𝑟 
𝛵1𝑛 2.3326*** 2.3326*** 2.3326*** 1.5061*** 1.5061*** 1.5061*** 

𝛵2𝑛 5.4410*** 5.4410*** 5.4410*** 2.2684 *** 2.2684*** 2.2684*** 
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  ε=0.001 ε=0.01 ε=0.05 ε=0.10 ε=0.15 ε=0.20 

𝛵3𝑛 1.1458*** 1.1031*** 0.8922*** 0.6761*** 0.6642*** 0.6002*** 

 

𝑠ℎ𝑏𝑢𝑙𝑘𝑒𝑟 
𝛵1𝑛 4.4167*** 4.4167*** 4.4167*** 4.4167*** 4.3954*** 3.9287*** 

𝛵2𝑛 19.5071*** 19.5071*** 19.5071*** 19.5071*** 19.3193*** 15.4347*** 

𝛵3𝑛 4.1311*** 4.0664*** 3.7952*** 3.3022*** 2.4405*** 1.6079*** 

 

𝑠𝑝𝑏𝑢𝑙𝑘𝑒𝑟 
𝛵1𝑛 2.7148*** 2.7148*** 2.7148*** 2.4261*** 2.1813*** 2.1813*** 

𝛵2𝑛 7.3701*** 7.3701*** 7.3701*** 5.8858*** 4.7582*** 4.7582*** 

𝛵3𝑛 1.3683*** 1.3669*** 1.2855*** 0.9941*** 0.8489*** 0.7196*** 

 

𝑓𝑟𝑡𝑎𝑛𝑘𝑒𝑟 
𝛵1𝑛 4.0388*** 4.0388*** 4.0388*** 4.0388*** 4.0175*** 2.8758*** 

𝛵2𝑛 16.3120*** 16.3120*** 16.3120*** 16.3120*** 16.1402*** 8.2703*** 

𝛵3𝑛 2.7160*** 2.6938*** 2.4891*** 1.9380*** 1.0985*** 0.4372*** 

 

𝑛𝑏𝑡𝑎𝑛𝑘𝑒𝑟 
𝛵1𝑛 2.0189*** 2.0819*** 1.8366*** 1.8336*** 1.8336*** 1.8336*** 

𝛵2𝑛 4.3342*** 4.3342*** 3.3730*** 3.3621*** 3.3621*** 3.3621*** 

𝛵3𝑛 1.4527*** 1.4266*** 1.2161*** 0.9661*** 0.7854*** 0.6262*** 

 

𝑠ℎ𝑡𝑎𝑛𝑘𝑒𝑟 
𝛵1𝑛 4.1173*** 4.1173*** 4.1173*** 4.1173*** 3.9914*** 2.9137*** 

𝛵2𝑛 16.9520*** 16.9520*** 16.9520*** 16.9520*** 15.9316*** 8.4895*** 

𝛵3𝑛 3.4806*** 3.4425*** 3.0530*** 2.2031*** 1.2595*** 0.7161*** 

 

𝑠𝑝𝑡𝑎𝑛𝑘𝑒𝑟 
𝛵1𝑛 3.2559*** 3.2559*** 3.2559*** 2.8613*** 2.3979*** 2.3470*** 

𝛵2𝑛 10.6010*** 10.6010*** 10.6010*** 8.1868*** 5.7499*** 5.5082*** 

𝛵3𝑛 1.6015*** 1.5997*** 1.5155*** 1.1308*** 0.9802*** 0.7912*** 

 

𝑓𝑟𝑙𝑛𝑔 
𝛵1𝑛 2.2898*** 2.2898*** 2.2898*** 2.2898*** 0.9118*** 0.4374*** 

𝛵2𝑛 5.2431*** 5.2431*** 5.2431*** 5.2431*** 0.8314*** 0.1913*** 

𝛵3𝑛 0.4303*** 0.4224*** 0.3798*** 0.2703*** 0.0650*** 0.0362*** 

 

𝑛𝑏𝑙𝑛𝑔 
𝛵1𝑛 2.3034*** 2.3034*** 2.3034*** 2.3034*** 2.3034*** 1.6296*** 

𝛵2𝑛 5.3057*** 5.3057*** 5.3057*** 5.3057*** 5.3057*** 2.6554*** 

𝛵3𝑛 0.8033*** 0.7957*** 0.7064*** 0.5609*** 0.3299*** 0.0984*** 

 

𝑠ℎ𝑙𝑛𝑔 
𝛵1𝑛 1.5285*** 1.5285*** 1.5285*** 0.9133*** 0.9133*** 0.9133*** 

𝛵2𝑛 2.3364*** 2.3364*** 2.3364*** 0.8342*** 0.8342*** 0.8342*** 

𝛵3𝑛 0.1856*** 0.1827*** 0.1601*** 0.0932*** 0.0667*** 0.0531*** 

 

Notes: *, **, and *** denote significance at 10%, 5%, and 1% level, respectively. T1, T2, and T3 refer to Bera et al. (2016) 

statistics: 

  

 

where  is the quantile-mean covariance (QC) function, which is the asymptotic covariance between the sample 

quantiles and the sample mean. 

 

 

 

^

( )nC 
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3.2. Seasonality and stationarity analysis  

To test the stationarity and seasonality properties of our variables, we apply the 

conventional unit root test, a unit root test that allows for structural breaks, and stationarity tests. 

When it comes to the conventional unit root tests, we perform the ERS DF–GLS (Elliot, 

Rothenberg and Stock, 1996) unit root test. The descriptive and normality analysis revealed the 

asymmetric features of our series, thus indicating a possible existence of structural breaks. 

According to Perron (1989) and Lee and Strazicich (2003, 2013), when a structural break is 

ignored, the ability to reject the null hypothesis of non–stationarity decreases. Therefore, to check 

the robustness of the conventional unit root test, we perform the Lee and Strazicich (2003) 

Minimum Lagrange Multiplier (LM) unit root test that allows for possible structural break in the 

series. In all of the above tests, the null hypothesis is that the series includes a unit root. 

Additionally, to test for seasonality we apply the Kruskal–Wallis (1952) and the Periodogram F-

test, which tests on the sum of the values of a periodogram at seasonal frequencies. Both of the 

tests assume no seasonality as the null hypothesis.  

The seasonality analysis of our data has been conduction using the R and JDemetra+ 

econometric software1. Are results are reported in Table 4. Part A of Table 4 focuses on the Bulker 

segment. Our results reject the null hypothesis of stationarity and do not reject the null hypothesis 

of no seasonality, thus indicating that all of our variables are stationary and nonseasonal at levels. 

Part B of Table 4 concerns the variables of the oil tanker market. Since the freight rate (𝑓𝑟𝑡𝑎𝑛𝑘𝑒𝑟𝑠) 

series is seasonal in level and first difference, we deseasonalize the series in order to subtract the 

seasonal component. For that reason, we perform a Seasonal Decomposition by Moving Averages 

(Kendall and Stuart, 1983) and, thereafter, we subtract the seasonal component from the original 

series. Then we perform once again the unit root test and the seasonality test in the deseasonalized 

series to take the series non-seasonal and stationary in level. When it comes to the other three series 

of the oil tanker segment, we observe that they are stationary and non-seasonal in first differences. 

Finally, concerning the LNG vessels segment (Part C), we find that the deseasonalized freight 

market series (𝑓𝑟𝑙𝑛𝑔)  is stationary and non-seasonal in first differences. The remaining two 

 
1 JDemetra+ is a seasonal adjustment and time series analysis tool developed by the National Bank of Belgium in 

collaboration with the Deutsche Bundesbank, Insee and Eurostat in accordance with the Guidelines of the European 

Statistical System (ESS). Since 2 February 2015, JDemetra+ has been officially recommended to the members of the 

ESS and the European System of Central Banks as the software for seasonal and calendar adjustment of official 

statistics (https://cros-legacy.ec.europa.eu/system/files/Jdemetra_%20release.pdf ) 

https://ec.europa.eu/eurostat/cros/system/files/Jdemetra_%20release.pdf
https://cros-legacy.ec.europa.eu/system/files/Jdemetra_%20release.pdf
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markets, namely the newbuilding and secondhand (𝑛𝑏𝑙𝑛𝑔 , 𝑠ℎ𝑙𝑛𝑔  ) are stationary and nonseasonal in 

first differences. 

 

Table 4: Stationarity and seasonality tests 

Part A: Bulkers 

 𝑓𝑟𝑏𝑢𝑙𝑘𝑒𝑟 𝑛𝑏𝑏𝑢𝑙𝑘𝑒𝑟 𝑠ℎ𝑏𝑢𝑙𝑘𝑒𝑟 𝑠𝑝𝑏𝑢𝑙𝑘𝑒𝑟 

 level 1st dif. level 1st dif. level 1st dif. level 1st dif. 

Unit root tests 

ERS DF-GLS  -3.545 [1] *** - -2.109 [2] ** - -1.622 [1] * - -1.775 [1] * - 

ADFmax -3.766 [1] *** - -2.121 [2] * - -2.225 [1] * - 2.143 [1] * - 

Lee- Strazicich LM  -3.976 [3] ** - -3.121[3]*  -3.661[2]** - -3.580 [1]** - 

Breakpoint 1/2008  11/2008  10/2008  1/2004  

Seasonality tests 

Kruskal-Wallis  4.96 - 0.17 - 0.64 - 1.53 - 

Periodogram 0.164 - 0.008 - 0.068 - 0.145 - 

Part B: Oil Tankers 

 𝑓𝑟𝑡𝑎𝑛𝑘𝑒𝑟𝑠 (deseasonalized) 𝑛𝑏𝑡𝑎𝑛𝑘𝑒𝑟𝑠 𝑠ℎ𝑡𝑎𝑛𝑘𝑒𝑟𝑠 𝑠𝑝𝑡𝑎𝑛𝑘𝑒𝑟𝑠 

 level 1st dif. level 1st dif. level 1st dif. level 1st dif. 

Unit root tests 

ERS DF-GLS  -3.659[2]*** - -1.296[2] -2.402[3]** -0.647[1] -5.530[3]*** -1.142[1] -13.740[1]*** 

ADFmax -3.817[2]*** - -1.748[2] -8.706[1]*** -1.379[1] -14.555[0]*** -1.595[1] -17.366[0]*** 

Lee- Strazicich LM          

Breakpoint         

Seasonality tests 

Kruskal-Wallis  22.39** - 5.14 0.56 7.29 1.89 0.37 0.66 

Periodogram 1.546 - 0.012 0.019 0.693 0.086 0.018 0.082 

Part C: LNG vessels 

 𝑓𝑟𝑙𝑛𝑔 (deseasonalized) 𝑛𝑏𝑙𝑛𝑔 𝑠ℎ𝑙𝑛𝑔 𝑠𝑝𝑙𝑛𝑔 

 level 1st dif. level 1st dif. level 1st dif. level 1st dif. 

Unit root tests 

ERS DF-GLS  0.365[3] -4.207[3]*** -0.708[2] -2.835[1]*** -0.329[1] -5.647[3]*** - - 

ADFmax 0.703[3] -4.845[3]*** -0.372[2] -2.852[1]** 0.899[0] -2.112[3]* - - 

Lee- Strazicich LM        - - 

Breakpoint       - - 

Seasonality tests 

Kruskal-Wallis  0.28 8.64 0.78 1.96 0.88 12.5 - - 

Periodogram 0.169 0.453 0.075 0.454 0.082 0.830 - - 

Notes: The number in the bracket are lags used in the test. The lag order in ADFmax and ERS DF-GLS test are in accordance 

with Schwarz (1978) Bayesian Information Criterion, as in Elliot, Rothenberg and Stock (1996) while the lag order in the LM 

test is in accordance with the general to specific procedure, as in Lee and Strazicich (2003, 2013). 
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*, **, *** Denotes significance at 10%, 5% and 1% level, respectively. 

 

 

 

3.2. Econometric methodology 

 To empirical investigate interrelations in four shipping markets, we apply the static and 

dynamic connectedness methodology of Diebold and Yilmaz (2009, 2012, 2014) and the quantile 

connectedness methodology of Ando et al. (2022), which allows an in-depth analysis of the price 

transmission mechanism along the entire price distribution in each market.  

 

3.2.1 Static and dynamic connectedness analysis 

Initially, for each shipping market segment (oil tankers, bulkers, LNG) we consider a 

covariance stationary N-process Var(p), 𝑦𝑡 = ∑ 𝜑𝑖𝑦𝑡−𝑖 + 𝜀𝑡
𝑝
𝑖=1 , where y is a vector of the variables 

of our network, including the prices for each shipping market (freight rate, newbuilding, 

secondhand, scrap) and 𝜑𝑖 denotes the corresponding coefficients. εt~iid (0,σε
2), namely it is a 

vector of independently and identically distributed disturbances.  

 

𝑝𝑓𝑟,𝑛,𝑡 = 𝜃𝑓𝑟,𝑛,𝑡 + ∑𝜑𝑓𝑟,𝑗𝑝𝑓𝑟,𝑡−𝑗

𝐽

𝑗=1

+ ∑𝜑𝑛𝑏,𝑗𝑝𝑛𝑏,𝑡−𝑗

𝐽

𝑗=1

+ ∑𝜑𝑠ℎ,𝑗𝑝𝑠ℎ,𝑡−𝑗

𝐽

𝑗=1

+ ∑𝜑𝑠𝑝,𝑗𝑝𝑠𝑝,𝑡−𝑗

𝐽

𝑗=1

+ 𝑢𝑓𝑟,𝑛,𝑡        (1) 

𝑝𝑛𝑏,𝑛,𝑡 = 𝜃𝑛𝑏,𝑛,𝑡 + ∑𝜑𝑓𝑟,𝑗𝑝𝑓𝑟,𝑡−𝑗

𝐽

𝑗=1

+ ∑𝜑𝑛𝑏,𝑗𝑝𝑛𝑏,𝑡−𝑗

𝐽

𝑗=1

+ ∑𝜑𝑠ℎ,𝑗𝑝𝑠ℎ,𝑡−𝑗

𝐽

𝑗=1

+ ∑𝜑𝑠𝑝,𝑗𝑝𝑠𝑝,𝑡−𝑗

𝐽

𝑗=1

+ 𝑢𝑛𝑏,𝑛,𝑡      (2) 

𝑝𝑠ℎ,𝑛.𝑡 = 𝜃𝑠ℎ,𝑛,𝑡 + ∑𝜑𝑓𝑟,𝑗𝑝𝑓𝑟,𝑡−𝑗

𝐽

𝑗=1

+ ∑𝜑𝑛𝑏,𝑗𝑝𝑛𝑏,𝑡−𝑗

𝐽

𝑗=1

+ ∑𝜑𝑠ℎ,𝑗𝑝𝑠ℎ,𝑡−𝑗

𝐽

𝑗=1

+ ∑𝜑𝑠𝑝,𝑗𝑝𝑠𝑝,𝑡−𝑗

𝐽

𝑗=1

+ 𝑢𝑠ℎ,𝑛,𝑡          (3) 

𝑝𝑠𝑝,𝑛,𝑡 = 𝜃𝑠𝑝,𝑛,𝑡 + ∑𝜑𝑓𝑟,𝑗𝑝𝑓𝑟,𝑡−𝑗

𝐽

𝑗=1

+ ∑𝜑𝑛𝑏,𝑗𝑝𝑛𝑏,𝑡−𝑗

𝐽

𝑗=1

+ ∑𝜑𝑠ℎ,𝑗𝑝𝑠ℎ,𝑡−𝑗

𝐽

𝑗=1

+ ∑𝜑𝑠𝑝,𝑗𝑝𝑠𝑝,𝑡−𝑗

𝐽

𝑗=1

+ 𝑢𝑠𝑝,𝑛,𝑡        (4) 
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where: 𝑝𝑓𝑟,𝑛,𝑡, 𝑝𝑛𝑏,𝑛,𝑡, 𝑝𝑠ℎ,𝑛,𝑡, 𝑝𝑠𝑝,𝑛,𝑡, are the prices of each of the four shipping markets and for each 

of the 𝑛 (oil tankers, bulkers, LNG) shipping market segments, 𝜃𝑓𝑟,𝑛,𝑡, 𝜃𝑛𝑏,𝑛,𝑡, 𝜃𝑠ℎ,𝑛,𝑡, 𝜃𝑠𝑝,𝑛,𝑡  are 

the constants for each equation, 𝛼𝑗 , 𝛽𝑗 , 𝛾𝑗, 𝛿𝑗 are the coefficients of the lagged first differences, j 

denotes the number of lags and u is the error term. 𝑝𝑓𝑟,𝑡−𝑗 , 𝑝𝑛𝑏,𝑡−𝑗 , 𝑝𝑠ℎ,𝑡−𝑗 , 𝑝𝑠𝑝,𝑡−𝑗, are the lagged 

variables. Then, diagnostics analysis on the residuals using the Akaike Information Criterion (AIC) 

and Bayesian Information Criterion (BIC) is applied. To select the appropriate number of lags for 

each of the models, a maximum of 3 lags is specified. The moving average representation is given 

by 𝑥𝑡 = ∑ 𝐴𝑖𝜀𝑡−𝑖
∞
𝑖=1 , where 𝐴𝑖  are the coefficient matrices. The corresponding h step ahead 

generalized forecast-error variance decompositions by 𝜃𝑖𝑗
𝑔
(ℎ), for h = 1,2, … n are as follows: 

 

                             𝜃𝑖𝑗
𝑔(ℎ) =

𝜎𝑗𝑗
−1 ∑ (𝑒𝑖

′𝐴ℎ ∑𝑒𝑗)
𝐻−1
ℎ=0

2

∑ (𝑒𝑖
′𝐴ℎ ∑𝐴ℎ

′ 𝑒𝑖)
𝐻−1
ℎ=0

                                                                         (5) 

 

where Σ is the variance matrix of the error vector ε, 𝜎𝑗𝑗 is the standard deviation of the error term 

for the jth equation, 𝑒𝜄 is a selection vector with jth element equal to one and zero otherwise, 𝛴 is 

the variance matrix for the error vector 𝜀, 𝐴ℎ is the coefficient matrix multiplying the ℎ-lagged 

error vector.  

 The total spillover index (TSI), at the mean, is estimated as the following h step ahead 

forecast relative to total forecast error variation: 

 

𝑆𝑔(ℎ) =
∑ �̃�𝑖𝑗

𝑔𝑛
𝑖,𝑗=1,𝑖≠𝑗 (ℎ)

∑ �̃�
𝑖𝑗
𝑔𝑛

𝑖,𝑗=1 (ℎ)
100 = 1/𝑛 ∑ �̃�𝑖𝑗

𝑔𝑛
𝑖,𝑗=1,𝑖≠𝑗 (ℎ) · 100                                         (6) 

 

where �̃�𝑖𝑗
𝑔(ℎ) =

𝜃𝑖𝑗
𝑔
(ℎ)

∑ 𝜃
𝑖𝑗
𝑔𝑁

𝑗=1 (ℎ)
, are the 𝜃𝑖𝑗

𝑔
(ℎ)  normalized h step ahead error variance 

decompositions. 

The directional volatility spillovers to variable i from all other variables are given by: 

 

𝑆𝑖⃪𝑜𝑡ℎ𝑒𝑟𝑠
𝑔 (ℎ) =

∑ �̃�𝑖𝑗
𝑔𝑛

𝑖,𝑗=1,𝑖≠𝑗 (ℎ)

∑ �̃�
𝑖𝑗
𝑔𝑛

𝑖,𝑗=1 (ℎ)
100 = 1/𝑛 ∑ �̃�𝑖𝑗

𝑔𝑛
𝑖,𝑗=1,𝑖≠𝑗 (ℎ) · 100                                (7) 
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After examining the connectedness over the entire sample period, we derive the associated 

h-step ahead forecast error variance decomposition by employing a rolling window in order to 

assess the spillover effects variation over time.   

 

3.2.2 Quantile connectedness analysis 

 Further, we follow Ando et al. (2022) to develop a quantile connectedness network for our 

variables, which allows examining the spillover effects at a given conditional quantile, τ ∈ (0,1) 

(see, for example, Antonakakis et al., 2019; Chatziantoniou and Gabauer, 2021; Bouri et al., 2021).  

 To generalize the conditional mean connectedness analysis to quantile framework, the h-

step ahead mxm matrix of spillover effects for 𝑦𝑡 evaluated at the τ-th quantile is given by: 

𝐴𝜏
ℎ =

[
 
 
 
 𝜃1⃪1,(𝜏)

(ℎ)
𝜃1⃪2,(𝜏)

(ℎ)
𝜃1⃪1,(𝜏)

(ℎ)
𝜃1⃪𝑚,(𝜏)

(ℎ)

𝜃2⃪1,(𝜏)
(ℎ)

𝜃2⃪2,(𝜏)
(ℎ)

𝜃1⃪1,(𝜏)
(ℎ)

𝜃1⃪𝑚,(𝜏)
(ℎ)

…

𝜃𝑚⃪1,(𝜏)
(ℎ)

…

𝜃𝑚⃪2,(𝜏)
(ℎ)     

…
…

…

          𝜃𝑚⃪𝑚1,(𝜏)
(ℎ)

]
 
 
 
 

                                              (8) 

where   𝜃𝑗⃪1,(𝜏)
(ℎ)

   measures the spillover effects from variables i to variable j  and it defined as 

𝜃𝑗⃪1,(𝜏)
(ℎ)

= 𝐹𝐸𝑉𝐷(𝑦𝑗𝑡; 𝑢𝑖𝑡(𝜏), ℎ)., where 𝐹𝐸𝑉𝐷(𝑦𝑗𝑡; 𝑢𝑖𝑡(𝜏), ℎ), measures the proportion of the h-step 

ahead forecast error variance of the j-th variable in 𝑦𝑡, for 𝑢𝑖𝑡(𝜏) innovation. The corresponding 

measures of the network topology at the  th quantile are given by: 

𝑂𝑖⃪𝑖,(𝜏)
(ℎ)

= 𝜃𝑖⃪𝑖,(𝜏)
(ℎ)

                                                                     (9) 

where 𝑂𝑖⃪𝑖,(𝜏)
(ℎ)

 is the proportion of the h-step ahead forecast error variance of the i-th variable, at 

the τ-th quantile, that can be attributed to shocks to itself, called own variance share, 

𝐹𝑖⃪·,(𝜏)
(ℎ)

= ∑ 𝜃𝑖⃪𝑗,(𝜏)
(ℎ)𝑚

𝑗=1,𝑗≠𝑖                                                                 (10) 

where,  𝐹𝑖⃪·,(𝜏)
(ℎ)

 measures the total spillover (total directional connectedness) from the system to 

variable i, at the τ-th quantile, 

𝑇·⃪𝑖,(𝜏)
(ℎ)

= ∑ 𝜃𝑗⃪𝑖,(𝜏)
(ℎ)𝑚

𝑗=1,𝑗≠𝑖                                                                 (11) 

where, 𝑇·⃪𝑖,(𝜏)
(ℎ)

 measures the total spillover from variable i, to the system, at the τ-th conditional 

quantile, 

𝛮𝑖⃪𝑖,(𝜏)
(ℎ)

= 𝑇·⃪𝑖,(𝜏)
(ℎ)

− 𝐹𝑖⃪·,(𝜏)
(ℎ)

                                                              (12) 
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where, 𝛮𝑖⃪𝑖,(𝜏)
(ℎ)

 measures the net directional connectedness of variable i, at the τ-th conditional 

quantile, 

                              𝑆𝜏
ℎ = 𝑚−1 ∑𝐹𝑖⃪·,(𝜏)

ℎ                                                                              (13)

𝑚

𝑖=1

 

where 𝑆𝜏
ℎ is the Total Spillover Index (TSI) at the τ-th conditional quantile. 

 

4. Empirical analysis and discussion 

The empirical analysis is conducted as follows. In Section 4.1, we present the total 

volatility spillover effects among the shipping markets (freight rates, newbuilding, secondhand, 

scrap market) for each of the three segments (Bulker vessels, Oil Tankers, LNG vessels). The only 

exception concerns the LNG vessels, where due to unavailability of data we do not include the 

scrap market. In doing so we use the Total Spillover Index (TSI) at the mean (static and dynamic) 

and along the conditional distribution. Second, in Section 4.2, we evaluate the net directional 

connectedness for each of the three segments and for each market at various quantiles (τ=0.10, 

τ=0.20, …, τ=0.90). Third, in Section (4.3) we perform a rolling analysis based on the quantile 

VAR to examine the time varying evolution of the spills among the markets of each segment. We 

also present the network visualization for each segment. Finally, in section 4.4, we discuss the 

interpretation and the policy implication of our empirical results. 

 

4.1 Integration across the shipping markets: Total spillover effects  

 According to Diebold and Yilmaz (2009, 2012, 2014) a spill-over index is a quantitative 

tool to measure aggregate spillover effects across markets, namely the TSI index allows to measure 

the interdependence (connectedness) and therefore the degree of integration, across markets. A 

higher (lower) level of total spillover effects across markets means a higher (lower) degree of 

interdependence (connectedness) across the markets and thus a higher (lower) degree of 

integration across them. Stopford (2009) suggests that as the same shipowners are trading in all 

four markets (freight market, second-hand vessels market, newbuilding market, scrap market), 

their activities are closely interrelated and the corresponding four markets are highly integrated, in 

the sense that they are linked together. Therefore, we use the TSI index to measure the degree of 
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interdependence of the shipping markets for each of the three segments: bulker vessels, oil tankers, 

LNG vessels. 

 Initially, we examine the total spillover effects among the shipping markets of each 

segment, by calculating the Total Spillover Index (TSI) using the mean approach, both static and 

dynamic and then by calculating the index across different quantiles of the conditional distribution 

(Figure 1). The quantile approach to measure the TSI index captures the impact of negative and 

positive shocks of different intensity and magnitude. Following Bouri et al. (2021) and Ando et al. 

(2022), we interpret an increase (decrease) in the TSI as an indication of an increase (decrease) in 

the integration of the shipping markets due to a positive (upper quantiles) or a negative (lower 

quantiles) shock. A higher (lower) level of integration means correspond to a stronger (weaker) 

price transmission mechanism among the prices of each shipping market.  

 Figure 1a. depicts the evolution of the static and dynamic mean TSI index for the bulker 

segment, showing the degree of integration among the shipping markets of the segment, which is 

equal to 52.01% (grey line) and 56.13% (black line), respectively. It also depicts the variation of 

the TSI across different quantiles of the conditional distribution (dotted line). According to our 

results the TSI index, namely the degree of market integration, exhibits and asymmetric behavior 

across the quantiles. Specifically, the index varies between 54.14% (τ=0.50) and 67.42% (τ=0.90). 

Additionally, the graph shows that the TSI index gradually increases as we move from the middle 

towards the extreme tails of the conditional distribution, implying that the degree of market 

integration in the bulkers segment increases after positive and negative shocks of different 

magnitude.  Specifically, after an extreme positive shock (τ=0.90) the TSI index reaches 67.42%, 

while the corresponding value after an extreme negative shock (τ=0.10) is 65.72%. Therefore, the 

level of integration among the four markets in the bulker segment is substantially higher after 

negative (left-tail dependence) or positive (right-tail dependence) shocks.  

 Figure 1b. depicts the evolution of the static and dynamic mean TSI index for the Oil 

Tankers segment, showing the degree of integration among the four shipping markets of the 

segment, which is equal to 32.88% (grey line) and 64.61% (black line), respectively. It also depicts 

the variation of the TSI across different quantiles of the conditional distribution (dotted line). 

According to our results the TSI index, namely the degree of market integration, exhibits and 

asymmetric behavior across the quantiles. Specifically, the index varies between 57.80% (τ=0.50) 

and 87.39% (τ=0.90). Additionally, the graph shows that the TSI index gradually increases as we 
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move from the middle towards the extreme tails of the conditional distribution, implying that the 

degree of market integration in the bulkers segments increases after positive and negative shocks 

of different magnitude.  In detail, after an extreme positive shock (τ=0.90), the TSI index reaches 

87.39%, while the corresponding value after an extreme negative shock (τ=0.10) is 82.09%. 

Therefore, the level of integration among the four markets in the oil tankers’ segment is 

substantially higher after negative (left-tail dependence) or positive (right-tail dependence) shocks.  

 Figure 1c. depicts the evolution of the static and dynamic mean TSI index for the LNG 

vessels segment, showing the degree of integration among the shipping markets of the segment, 

which is equal to 45.58% (grey line) and 51.82% (black line), respectively. It also depicts the 

variation of the TSI across different quantiles of the conditional distribution (dotted line). 

According to our results, the TSI index, that is the degree of market integration, exhibits an 

asymmetric behavior across the quantiles. Specifically, the index varies between 32.78% (τ=0.40) 

and 66.22% (τ=0.10). Additionally, the graph shows that the TSI index gradually increases as we 

move from the middle towards the extreme tails of the conditional distribution, implying that the 

degree of market integration in the LNG segments increases after positive and negative shocks of 

different magnitude. Specifically, after an extreme positive shock (τ=0.90) the TSI index reaches 

61.97%, while the corresponding value after an extreme negative shock (τ=0.10) is 66.22%. 

Therefore, the level of integration among the four markets in the LNG vessels segment is 

substantially higher after negative (left-tail dependence) or positive (right-tail dependence) shocks.  

 The above results confirm the integration of the shipping markets, as we observe strong 

values of the TSI index, implying a significant shock transmission to the system and therefore, a 

high degree of connectedness across the markets. More importantly, the asymmetric effects 

mentioned above imply that the degree of integration across the four shipping markets is higher 

after positive or negative shocks, in all segments. Therefore, in all segments, the magnitude of the 

price-spillovers transmission mechanism increases after favorable and/or adverse shocks. As Ando 

et al. (2022) mention, the asymmetric spillover effects after positive and negative shock are in line 

with Dendramis’ et al. (2015) hypothesis, according to which the informational transmission 

mechanism of large shocks is greater than the informational transmission mechanism of smaller 

shocks. It is also important to note that the asymmetric market integration cannot be identified by 

the mean approach that accounts only for the impact of average shocks. Our results are in line with 

Antonakakis et al. (2019), Bouri et al. (2021), Palaios and Papapetrou (2022), Palaios et al. (2024), 
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who also find asymmetric patterns of the TSI after a shock. Further, considering the 

methodological interpretation of our results, it becomes evident that asymmetric econometric 

methodologies are more appropriate in examining the correlation across different shipping markets 

compared to the classical mean approach, that would lead to spurious results. 
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Figure 1. Total Spillover Index (TSI) at the Mean and along the Conditional 

Distribution for Bulkers (figure 1a), Oil Tankers (figure 1b) and LNG vessels (figure 

1c).  The horizontal line is the TSI estimated at the conditional mean according to 

the dynamic approach (black line) and the static approach (grey line).  

Note: Total Spillover Index (TSI) is calculated by equation for the quantile curve 

and by equation for the mean approach 

(a) Total Spillover Index (TSI) for Bulkers                         (b) Total Spillover Index (TSI) for Oil Tankers                         

(c) Total Spillover Index (TSI) for LNG vessels                         
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4.2 How the four shipping markets integrate: Net connectedness measures across quantiles 

Next, we perform net directional connectedness analysis for each of the four markets of 

each shipping segment to examine how the shipping markets integrate. According to Diebold and 

Yilmaz (2012), net directional connectedness allows us to examine the direction of volatility 

spillovers across markets. It should be noted that the net directional connectedness shows the net 

volatility of each market, as it is the difference between the volatility provided by each shipping 

market to the other shipping markets and the volatility received by the other markets. Therefore, 

we can use the directional connectedness measures of each market to examine how the four 

shipping markets interact with each other and identify the net spillover effects across the four 

shipping markets. Table 4 reports the net directional connectedness, i.e. the net impact, of each 

shipping market on the other shipping markets, for each segment examined. As a result, the second 

and the third columns of Table 4 show the net spillover effects (net directional connectedness) 

evaluated at the mean (static and dynamic). The remaining columns of Table 4 report the net 

spillover effects in each market for each quantile (τ=0.10, τ=0.20, …, τ=0.90)., according to the 

methodology of Ando et al. (2022).   

Part A of Table 5 shows the integration process of the bulkers segment. Specifically, we 

observe that the spillover effects of the freight market are positive and the highest (38.51 for the 

mean static and 39.21 and mean dynamic approach) compared to the net spills of the other markets. 

Further, we observe that the net spills of the freight market remain positive and are of the highest 

magnitude across the entire distribution. We also detect that the spills transmission mechanism of 

freight rates towards the other markets exhibits an asymmetric behavior, as it increases as we move 

from the lower to higher quantiles. Further, we observe that the net spills of the scrap market are 

also positive on average and across the distribution, but of lower magnitude compared to the freight 

market spills. Specifically, the static and dynamic means are 18.36 and 6.52 while across the 

quantiles the values of the net spills are vary between 0.01 (τ=0.40) and 8.92 (τ=0.20). When it 

comes to the secondhand vessels market, we observe that the net spills are negative for both the 

static and the dynamic approach, namely -3.06 and -9.61 respectively, which means that the scrap 

market is integrated as a net spill receiver, namely it is affected by the other markets more that it 

affects the other markets. Thus, the scrap market comes across as a dependent market, rather than 

as a driving force. When it comes to the evolution of the net spills across the entire distribution, 

we observe that it exhibits an asymmetric behavior. Specifically, in the upper quantiles that 
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indicate positive shocks, the scrap market is integrated as a net spill receiver, while during negative 

shocks it acts as a net spill transmitter, namely as a market driver. Finally, considering the 

newbuilding market, it is found to be a strong spills receiver, with the value of the mean static 

spills and the mean dynamic spills at -53.81 and -36.12 respectively. Thus, the newbuilding market 

comes across as the most dependent market of the network. The same observation applies when it 

comes to the conditional distribution, where we find that the net spills remain negative. We also 

observe a clear asymmetric behavior as the net spills received tend to be of higher magnitude in 

the middle quantiles, a finding which is in line with Dungey et al. (2019).   

 

Table 5: Net Directional Connectedness for Bulkers (Part A), Oil Tankers (Part B) and LNG vessels (Part C) evaluated 

for the four markets at the Mean (static and dynamic) and at various Quantiles (τ=0.10, τ=0.20, ..., τ=0.90)  

 Mean 

static 

Mean 

dynamic 

Quantiles 

τ=0.10 τ=0.20 τ=0.30 τ=0.40 τ=0.50 τ=0.60 τ=0.70 τ=0.80 τ=0.90 

Part A: Bulkers 

𝑓𝑟𝑏𝑢𝑙𝑘𝑒𝑟  38.51 39.21 13.65 22.57 28.39 27.87 26.85 30.08 31.08 31.95 26.95 

𝑛𝑏𝑏𝑢𝑙𝑘𝑒𝑟  -53.81 -36.12 -21.04 -27.92 -34.34 -34.49 -30.67 -27.01 -26.25 -22.86 -17.81 

𝑠ℎ𝑏𝑢𝑙𝑘𝑒𝑟 -3.06 -9.61 2.86 3.56 2.00 6.60 1.09 -4.68 -11.43 -10.53 -9.85 

𝑠𝑝𝑏𝑢𝑙𝑘𝑒𝑟  18.36 6.52 4.54 8.92 3.95 0.01 2.72 1.61 0.60 1.44 0.71 

Part B: Oil Tankers 

𝑓𝑟𝑡𝑎𝑛𝑘𝑒𝑟  13.40 21.09 11.62 20.29 24.53 14.94 10.39 13.21 20.25 25.86 17.03 

𝑛𝑏𝑡𝑎𝑛𝑘𝑒𝑟  -28.97 -39.38 -20.73 -32.23 -35.90 -35.76 -34.44 -32.55 -32.47 -32.94 -23.65 

𝑠ℎ𝑡𝑎𝑛𝑘𝑒𝑟  9.69 -0.10 0.31 2.15 7.67 7.73 6.39 -6.06 -6.36 -5.96 -1.75 

𝑠𝑝𝑡𝑎𝑛𝑘𝑒𝑟  5.87 19.39 8.80 9.80 3.70 13.10 17.66 20.40 18.58 13.05 8.37 

Part C: LNG vessels 

𝑓𝑟𝑙𝑛𝑔  13.94 15.43 13.22 6.49 0.80 -2.17 -4.65 -3.27 3.52 17.19 33.28 

𝑛𝑏𝑙𝑛𝑔 -20.72 -14.82 -7.79 -15.03 -18.08 -13.25 -15.11 -19.49 -28.19 -24.78 -37.70 

𝑠ℎ𝑙𝑛𝑔  6.78 -0.61 -5.42 8.54 17.28 15.43 19.76 22.76 24.67 7.59 4.41 

Notes: (1) Each raw of the matrix gives the net directional connectedness from each shipping market (freight market, 

secondhand vessels market, newbuilding market, demolition market) of each segment (Bulkers, Oil Tankers, LNG 

vessels), at the mean (static and dynamic) and across quantiles. The values for the mean approach derived from equation, 

while the values for the net directional connectedness of each quantile are derived from equation. 

 

 

Figure 2 is a visualization of the market network displaying similar patterns in the tails and the 

median of the distribution. The direction of each edge is indicated by an arrowhead and its 

thickness is proportional to the magnitude of the spills for each pairwise relationship. We observe 

that the freight rate market is the dominant market acting as the driving force (net transmitter of 
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spillovers), followed by the scrap market. The secondhand and the newbuilding markets are 

integrated as net spill receivers, with the latter being the strongest net receiver.  Overall, we observe 

that when it comes to the bulker segment of the shipping industry, the driving force is the freight 

market, which is the dominant net transmitter of spillovers, followed by the scrap market, while 

the secondhand market and the newbuilding markets are integrated as dependent markets, with the 

latter being the strongest net receiver. Further, in all markets of the bulker segment we observe a 

strong asymmetric behavior across the conditional distribution. 

Part B of Table 5 shows the integration process of the oil tankers segment. Here we detect 

that the spillover effects of the freight market are positive and on average the highest (13.40 for 

the mean static and 21.09 and mean dynamic approach) compared to the net spills of the other 

markets, albeit lower in comparison to bulkers. Additionally, we find that the net spills of the 

freight market remain positive across the entire distribution and that they are the most influential 

node in the market network. Our results also suggest that the spills transmission mechanism of 

freight rates towards the other markets exhibits an asymmetric behavior, with stronger effects at 

the tails of the distribution. In the case of the scrap market, we observe a similar behavior as in the 

bulkers segment, namely the net spills are positive on average (5.87 for mean static and 19.39 for 

mean dynamic) and across the distribution, but of lower magnitude compared to the freight market 

spills. Like the behavior of the newbuilding market for bulkers, the effects of the scrap market are 

stronger in the middle quantiles. For the secondhand vessels market, we find evidence that the 

average spills are positive at the mean static (9.69) and negligible at the mean dynamic (-0.10). 

When it comes to the evolution of the net spills across the entire distribution, we observe that it 

exhibits an asymmetric behavior, similar to that in the bulkers market. Specifically, in the upper 

quantiles that represent positive shocks, the scrap market is integrated as a net spill receiver, while 

during negative shocks it acts as a net spill transmitter, i.e. as a market driver. Finally, considering 

the newbuilding market, we observe that, on average it is the stronger spills receiver, with the 

value of the mean static spills and the value of the mean dynamic spills at -28.97 and -39.38 

respectively. Therefore, the newbuilding market is integrated as the most dependent market of the 

network in the oil tankers segment. This is also true when it comes to the conditional distribution, 

where we observe that the net spills remain negative, with the stronger effects taking place in the 

middle of the distribution. The visualization of the oil tankers market network displays similar 

patterns. Specifically, we observe that, as in the bulkers segment, the freight rate market is the 
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dominant market acting as the driving force (net transmitter of spillovers), followed by the scrap 

market. The secondhand and the newbuilding markets are integrated as net spill receivers, with the 

latter being the strongest net receiver.  Overall, we observe that when it comes to the oil tankers 

segment of the shipping industry, the driving force is the freight market, which is the dominant net 

transmitter of spillovers, followed by the scrap market, while the secondhand market and the 

newbuilding markets are integrated as dependent markets, with the latter being the strongest net 

receiver. Furthermore, in all markets of the oil tankers segment we observe a strong asymmetric 

behavior across the conditional distribution. 

Part C of Table 5 shows the integration process in the LNG vessels segment. As in the 

freight market, we observe that the spillover effects of the freight market are positive and on 

average the highest (13.94 for the mean static and 15.43 and mean dynamic approach) compared 

to the net spills of the other markets, but lower compared to the bulkers and the oil tankers 

segments. However, when focusing on the entire distribution, we observe that the freight market, 

contrary to our findings concerning the previous segments, is integrated as a net spill receiver in 

the middle quantiles τ=(0.40, 0.50, 0.60), where the values of the net spillover effects are  -2.17, -

4.65, and -3.27 respectively, while it is integrated as a net spill provider at the extreme left, τ=(0.10, 

0.20, 0.30) and right τ=(0.70, 0.80, 0.90) quintiles of the tail dependence. The corresponding values 

are (13.22, 6.49, 0.80) and (3.52, 17.19, 33.28). When it comes to the secondhand market, contrary 

to the previous cases, we now observe a strong net positive impact on the rest markets across the 

entire distribution. Finally, the newbuilding market, as in the previous segments, is integrated as a 

net spill receiver. The visualization of the LNG vessels market network reveals that while in the 

lower quantile the dominant market is the freight market, in the middle and upper quantiles it is 

the secondhand market that emerges as the driving force in the LNG segment of the industry. 

 Overall, our integration analysis reveals strong asymmetric spillover effects across the four 

shipping markets. The freight market and the scrap market are the two leading markets, acting as 

driving forces. Between them, it is the freight market that is dominant. The secondhand and 

newbuilding markets are net spill receivers, thus being integrated as endogenous markets in two 

out of the three shipping industry segments examined. The exception is the LNG vessels segment, 

where the secondhand market leads the freight market in the middle- and the right-tail of the 

distribution. 
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(a) quantile: τ=0.10                           

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Bulker segment: Network of markets 

visualization for quantiles: τ=0.10 quantile (Figure 2a), 

τ=0.90 (Figure 2b), τ=0.50 (median) (Figure 2c) 

 

 

 

(b) quantile: τ=0.90                           

(c) quantile: τ=0.50                           
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(a) quantile: τ=0.10                           

 

 

 

 

 

 

 

 

 

 

 

 

  

  

 

 

 

 

 

 

Figure 3: Oil Tankers segment: Network of markets 

visualization for quantiles: τ=0.10 quantile (Figure 3a), 

τ=0.90 (Figure 3b), τ=0.50 (median) (Figure 3c) 

 

 

 

(b) quantile: τ=0.90                           

(c) quantile: τ=0.50                           



26 

 

(a) quantile: τ=0.10                           

 

  

  

 

 

 

Figure 4: LNG vessels segment: Network of markets 

visualization for quantiles: τ=0.10 quantile (Figure 4a), 

τ=0.90 (Figure 4b), τ=0.50 (median) (Figure 4c) 

 

 

 

(b) quantile: τ=0.90                           

(c) quantile: τ=0.50                           
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4.3 Time – Varying shipping markets integration 

Up to this point our analysis has focused on the examination of the market interdependence 

without considering the impact of time. However, time evolution plays a major role in capturing 

and comparing the impact of major events that take place during different periods. To examine the 

dynamics of each of the four markets for each shipping segment we plot the time-varying evolution 

of the net spillover effects, allowing us to detect possible asymmetries in the integration of the 

markets at the median (τ=0.50) and the tails of the conditional distribution (τ=0.10, τ=0.90), at 

different periods (Figures 5, 6, 7). We use a fixed window length of 20 months and a 10-step 

forecast horizon2. 

Concerning the dynamic evolution of the net spills in the bulker segment (Figure 5), in line 

with our previous results, we observe that during normal times (τ=0.50, see Figure 5c), the general 

trend of the freight market is to be a net spills transmitter, while the newbuilding market is a net 

spill receiver. Further, the other two markets, namely the scrap and secondhand markets alternate 

their integration status between positive (net transmitters) and negative (net receivers) net spills. 

Additionally, our results indicate an upward trend in the case of freight rates after the COVID-19 

outbreak (2020), more profound in the middle- and the right-tail dependence, due to the increase 

in the freight rates. In contrast, the results show a downward trend after the Russian invasion of 

Ukraine (2022) and government interventions globally to mitigate the effects of COVID-19 and 

the Ukraine war, which is more profound in the middle- and the left-tail dependence, due to the 

decrease in the freight rates.  

The increase in the freight rate markets after the outbreak of COVID-19 has led to an 

increase in the price of secondhand vessels, as the shipowners try to take advantage of the higher 

freight rates increasing the demand for secondhand vessels, which means that the freight market 

transmits spillover effects to the secondhand market and, therefore, the latter acts as a net spills 

receiver. This evolution is profound in the right-tail dependence of the secondhand market, where 

we observe negative net spills after 2020. Shipbuilding prices are just as volatile as second-hand 

prices, but during freight rate market booms, when investors want a vessel promptly, prices of 

secondhand vessels increase faster than prices of newbuilding that need many years to be delivered 

(Stopford, 2009). Therefore, after periods of booming freight rates, we expect that both the 

 
2 We have performed various robustness tests using alternative window length and forecast horizon, which indicate 

similar qualitative findings. The results are available upon request. 
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secondhand and newbuilding market will act as net spill receivers. Moreover, we expect that the 

secondhand market will be affected earlier than the newbuilding market, as investors require 

vessels promptly. As prices of secondhand vessels bid up, investors turn to the newbuilding 

market. Therefore, the newbuilding market will receive spills from both the freight market and the 

secondhand market, thus it is expected to be the largest net receiver. According to our findings, 

after the COVID-19 outbreak and for as long as the prices of the secondhand vessels were low 

(τ=0.10), the secondhand market was a net spill receiver, mainly due to the impact of the higher 

freight rates. The increase in the demand of secondhand vessels gradually led to an increase in 

their prices, thus creating an incentive for investors to order to new vessels. With higher prices 

(τ=0.90), the secondhand market becomes the driving force for newbuildings and, as a result, a net 

spill provider. Regarding the newbuilding market, as long as the prices of new vessels are relatively 

low (τ=0.10), the newbuilding market is a net spill receiver from the freight rate and the 

secondhand market. However, the effects appear relatively later because initially the shipowners 

try to take advantage of the higher freight rates buying new vessels. As the prices of the new 

vessels increase (τ=0.90), the market gradually becomes a net spill transmitter to the scrap market 

and the freight market. When the new vessels are delivered, supply increases and the level of 

freight rates decreases which leads to an increase in the demand for demolition of the least efficient 

vessels. 

Concerning the dynamic evolution of the net spills in the oil tankers segment (Figure 6), in 

line with our previous results, we observe that, during normal times (τ=0.50, see Figure 6c), the 

general trend of the freight market tends to be a net spill transmitter, while the newbuilding market 

is a net spill receiver. Furthermore, the other two markets, namely the scrap and the secondhand 

markets, alternate their integration status between positive (net transmitters) and negative (net 

receivers) net spills. Additionally, our results indicate an upward trend of the freight rates after the 

COVID-19 outbreak (2020), more profound in the middle- and the right-tail dependence due to 

the increase in the freight rates. In contrast, a downward trend is observed following the Russian 

invasion of Ukraine (2022) and pertinent government interventions globally to mitigate the effects 

of COVID-19 and the Ukraine war, the latter found to be more profound at the left-tail dependence 

due to the decrease in freight rates, while the former being more pronounced in the right-tail 

dependence due to the increase in freight rates. 
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Figure 5: Net Directional Connectedness for Bulkers 

evaluated at: τ=0.10 quantile (Figure 5a), τ=0.90 

(Figure 5b), τ=0.50 (median) (Figure 5c) 

 

 

(b) quantile: τ=0.90                           

(a) quantile: τ=0.10                           

(c) quantile: τ=0.50                           
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Similar to the bulkers segment, after the COVID-19 outbreak and for as long as the prices 

of the secondhand vessels were low (τ=0.10), the secondhand market was a net spill receiver 

(Figure 6a) mainly due to impact of the higher freight rates. The increase in the demand of 

secondhand vessels gradually led to an increase in their prices, thus creating an incentive for 

investors to buy new vessels. Now, with higher prices (τ=0.90), the secondhand market becomes 

the driving force for newbuildings and, as a result, the secondhand market becomes a net spill 

provider (Figure 6b). When it comes to the newbuilding market, as long as the prices of new 

vessels are relatively low (τ=0.10, see Figure 6a), the market is a lagged net spill receiver from the 

freight rate and the secondhand market. However, as the price of new vessels increases, the market 

remains a net spills receiver, in sharp contrast with bulkers (τ=0.90, see Figure 6b). Therefore, 

despite the increase in the price of newbuildings, the freight and the demolition markets do not 

receive strong spill effects from higher newbuilding prices, thus acting as shock absorbers. 

Net spills in the LNG vessels segment are partially in contrast with our results for the other 

shipping industry segments. During normal times (τ=0.50, see Figure 7c), the trend of the freight 

market tends to be a net spill receiver, as in the newbuilding market, while the secondhand hand 

market appears to be the driving force. In contrast, during periods of crisis the freight market 

becomes again the dominant net spill transmitter market. The predominance of the secondhand 

market over the freight market during the normal periods and partly after the COVID-19 outbreak, 

is attributable to the fact that shipowners in this segment are seeking capital gains through buying 

and selling ships in the context of the Risky Asset Pricing (RAP) model (Stopford, 2009, p. 340). 

It also corroborates the finding of Theodossiou et al. (2020) about shipping investors being willing 

to accept lower expected returns for the opportunity to earn high payoffs in the future. 

Overall, we observe that in all segments the newbuilding market is proved to be net spills 

receiver which means that it is endogenous to the market network in each segment. Moreover, the 

freight market, both in the bulkers and the oil tankers segments, appears to be the leading and 

dominant market, equally during normal periods and following exogenous shocks, in line with 

Stoprford’s theory. When it comes to the secondhand and the newbuilding markets, it appears that 

they are interrelated, with the former acting as a net transmitter to the latter when the prices of the 

secondhand vessels tend to increase. On the other hand, the LNG segment is characterized by a 

high degree of volatility and, even though the freight market turns out not to be the driving force 
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during normal times and negative shocks, it does become the dominant net spill transmitter during 

periods of positive shocks. 
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Figure 6: Net Directional Connectedness for Oil 

Tankers evaluated at: τ=0.10 quantile (Figure 5a), 

τ=0.90 (Figure 5b), τ=0.50 (median) (Figure 5c) 

 

 

(a) quantile: τ=0.10                           
(b) quantile: τ=0.90                           

(c) quantile: τ=0.50                           
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Figure 7: Net Directional Connectedness for LNG 

vessels evaluated at: τ=0.10 quantile (Figure 5a), 

τ=0.90 (Figure 5b), τ=0.50 (median) (Figure 5c) 

 

 

(a) quantile: τ=0.10                           
(b) quantile: τ=0.90                           

(c) quantile: τ=0.50                           
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5. Conclusions 

 In this paper we examine the degree of integration and the corresponding spillover effects 

across the four shipping markets (freight, secondhand, newbuilding, and scrap) for three different 

segments of the industry: bulkers, oil tankers, and LNG vessel). In our analysis we use monthly 

data for a time period ranging from 1990 to 2023, depending on the data availability for each 

shipping market and segment. To measure the degree of integration across the markets we employ 

the quantile connectedness methodology (Ando et al., 2022), which offers a more robust 

econometric framework for identifying spillover effects in the presence of conditional 

heterogeneity and departures from the classical Gaussian assumptions. 

 The contribution of our study is that we examine the asymmetric connectedness of the four 

shipping markets based on Stopford’s (2009) shipping market integration theory for bulkers, oil 

tankers, and LNG vessels. To the best of our knowledge, an asymmetric spillover approach to 

measure the interdependence across the four shipping markets is missing from the literature. The 

main findings of our study are the following: First, we empirically confirm the high degree of 

integration of the four shipping markets, as we observe strong values of the TSI index, implying a 

significant shock transmission mechanism (connectedness) across the markets. Second, the 

integration of the four markets exhibits strong asymmetries, as the spillover effects after a change 

are higher at the tails of the conditional distribution. Third, in line with Stopford’s theory, the 

freight market comes out as the strongest net spill provider and, consequently, the dominant 

market, leading the remaining three markets. The scrap market is also a net spill provider. Overall, 

the secondhand and newbuilding markets are net spill receivers, thus been integrated as 

endogenous markets . The only exception concerns the middle and right tail dependence of the 

freight market in the LNG vessels segment, where the secondhand market leads during normal 

times, as well as after positive shocks. The predominance of the secondhand market over the 

freight market during the normal periods and partly after the COVID-19 outbreak on the LNG 

sector is due to pursuit of higher capital gains on the part of shipowners selling and purchasing 

ships (RAP model). Fourth, the time-varying analysis revealed that the freight market, both in the 

bulkers and the oil tankers segments, appears to be the leading and dominant market both during 

normal periods and following shocks, corroborating Stopford’s (2009) theory. Fifth, the time-

varying analysis depicts an interconnection between the secondhand and the newbuilding markets, 

with the former acting as a net transmitter to the latter when the prices of the secondhand vessels 
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are going up. Sixth, our dynamic analysis provides evidence consistent with strong spillover effects 

from exogenous shocks arising from the pandemic, the war in Ukraine and government 

interventions in the aftermath of these shocks to counterbalance the adverse implications for 

economies globally.  

The findings of this paper have strong policy implications for the decision makers of the 

shipping industry. The knowledge concerning the magnitude and direction of interdependence 

across the shipping markets is of vital importance for investors who are willing to take advantage 

of the opportunities offered by the volatility transmission mechanisms of the shipping markets and 

make profit through ship and asset management. 
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NOTE 

 

We apply the Quantile Connectedness methodology to measure the degree of 

interdependence, i.e. the integration, across different shipping markets for three segments of the 

shipping industry (bulkers, oil tankers, and LNG vessels). 
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